

ITU International Satellite Symposium 2017

Harmful Interference to Space Services

Jorge Ciccorossi
Space Services Department
Radiocommunication Bureau

- 1 ITU Role in preventing and resolving Harmful Interference
- 2 Overview of Procedures and main provisions applicable to Space Services
- The Current Situation, Statistics and Typical Cases of harmful interference reported to BR
- 4 ITU actions to combat Harmful Interference to Space Services
- 5 Summary and Key Messages

Radiocommunication Sector

Main Strategic Goal -> To ensure Interference-Free Operation

Why?

- To Maximize Quality and Availability of Service
- → To Prevent loss of investment, customers and revenue by minimizing unusable satellite capacity due to interference
- → To guarantee a Successful Mission

How?

193 Member States+700 Sectors members,Associates, Academia

- I. International Regulations(cs, cv, RR)
- II. Global Standards & Guidelines
- III. Assistance to administrations

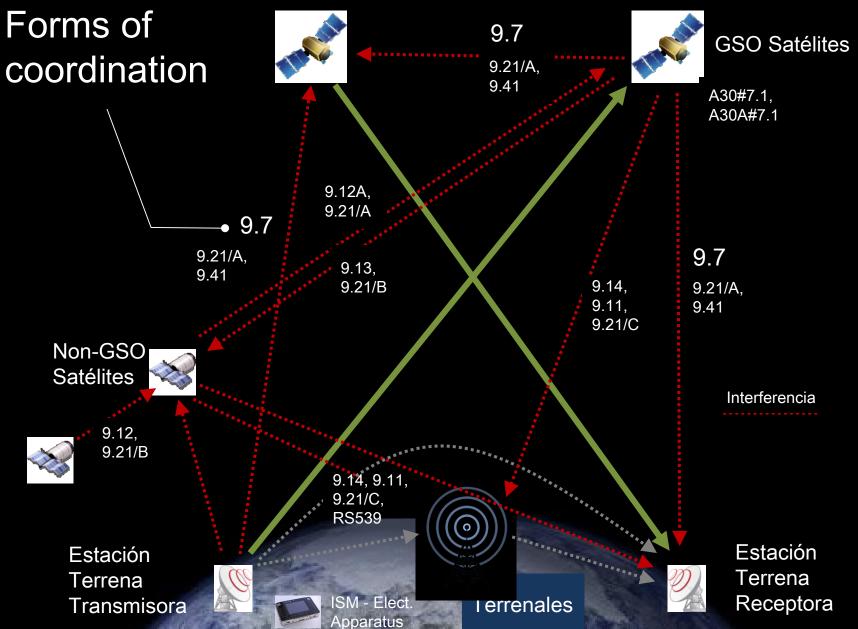
ITU Measures

Preventive:

- Study Groups Activities
- Compatibility Studies
- Development of Recommendations, Reports and Handbooks
- Radiocommunication Assembly
- World Radiocommunication Conference
- Coordination and Notification of Satellite Networks and Earth Stations, Application of the Radio Regulations
 - → Provides International Recognition and Protection

Corrective:

- Art. 15 and Appendix 10 to RR + ITU-R SM. 2181:
 - → To report a case of Harmful Interference to Radiocomm. Bureau
- Radio Regulations Board's Decisions


Overview of key provisions in the RR:

- > Art. 5: Table of Frequency Allocations
- > Art. 9: Coordination Procedure of satellite networks
- Art. 11: Notification Procedure of satellite networks
- > AP 30, AP30A, AP30B: BSS and FSS plans
- Art.21: Sharing Scenario between Space and Terrestrial systems (limits on PFD, eirp, minimum elevation angle, etc.)
- Art.22: Sharing scenario between GSO, NGSO (limits on epfd, station keeping, pointing accuracy, off-axis eirp density on Earth Stations)
- > Art. 15: Procedure in case of Harmful Interference
- > Art. 13.2: Request for assistance in case of Harmful Interference (HI)
- > Art. 13.6: BR request Adms clarifications about recorded assignments
- > Art. 16: International Monitoring
- > Art. 18: Licensing Identification of Stations
- AP 10 and Report ITU-R SM.2181 (submission of information)
- And more...

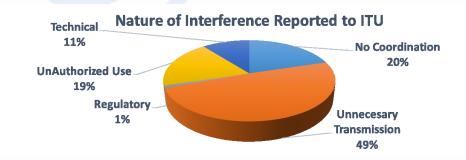
To Control Level of Interference

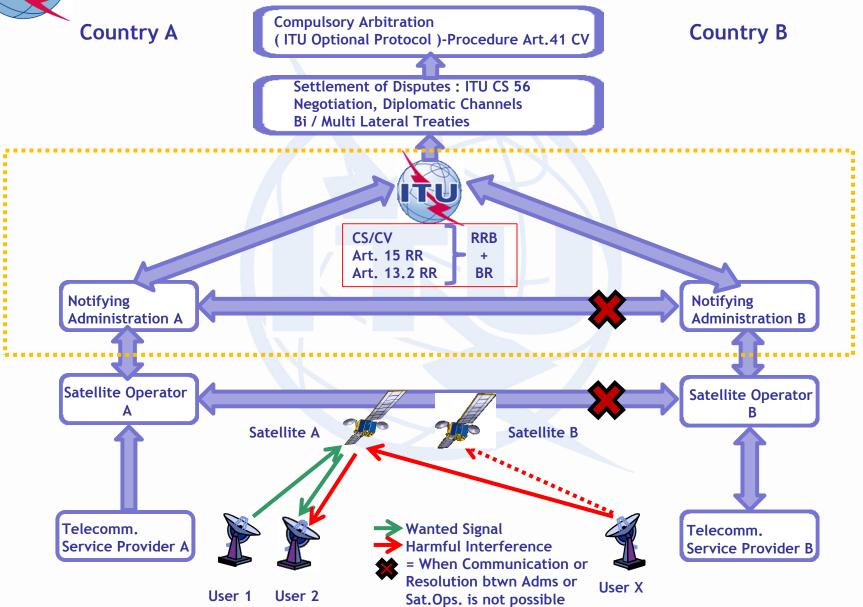
The Current Situation Harmful Interference Reported to BR

From 2011 to 2016

Affected Services:

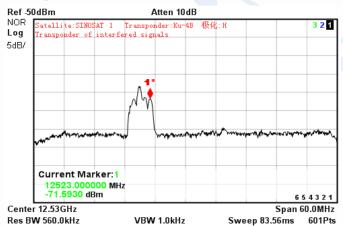
or 1 or 2 or 2 or 2 or 2 or 3


FSS, BSS, MSS, EESS, RNSS


Affected Freq. Ranges:

- 1.2 GHz
- 1.5 / 1.6 GHz
- 2.2 GHz
- 3/4, 5/6 GHz
- 10-14 GHz
- 17/18 GHz

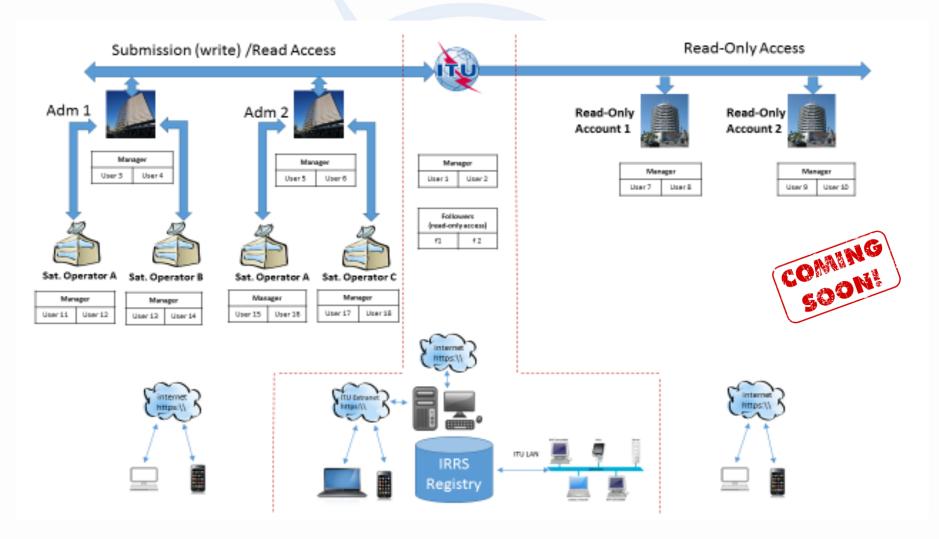
Schema of Actions in case of Harmful Interference



How to Report a Case of Harmful Interference to ITU?

I. To submit Letter to BR:

- Today
- For BR Information, or
- For BR Action, requesting Assistance under No 13.2 of Radio Regulations
- II. In both cases the information to be submitted is described in:
- III. Appendix 10 to RR
- IV. ITU-R Report 2181
- V. If possible, Geolocation Information and Scan Plots



Satellite Interference Reporting and Resolution System (SIRRS)

193 Member States!

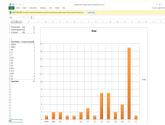
RES 186 PP-2014

Summary + Uploaded Documents and High Quality Images

Affected Frequency Assignments

Assigned frequency	14.020000 GHz
Bandwitdth	36.000000 MHz
Polarization	Н
Service	FSS

Upload documents

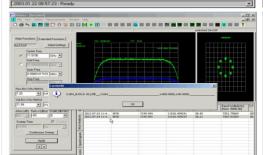

Title	Letter from Affected Administration Letter.docx	
ile name		
Fitle .	Interference Signal Geolocation Plot	
Date of receipt	17/11/2016 15:30:00	
File name	Geolocation.pdf	
	Interfered and Interfering Signal Scan Plots	
	17/11/2016 15:30:55	
Date of receipt		
Date of receipt File name	Scan Plot.pdf	
File name		
	Scan Plot.pdf	

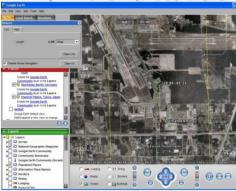
Title	Format Report 2181	
Description	Additional Info	
Date of receipt	17/11/2016 15:32:34	
File name	Additional Info REP-SM.2181.docx	

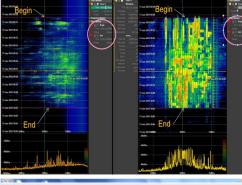
Title	Statistical Info	
Description	To be used for Analysis	
Date of receipt	17/11/2016 15:34:26	
File name	Statistical Info 4 Analysis.xlsx	

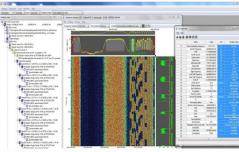
Remarks

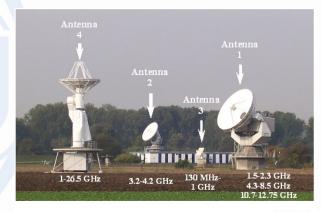
SIRRS




2. Particulars concerning the PASSIVE SENSOR experiencing the harmful interference


Satellite	Soil Moisture and Ocean Salinity (SMOS) satellite		
Mission description	SMOS is an Earth Observation mission lead by the European Space Agency (ESA) with participation of CNES (France) and CDTI (Spain). The main scientific objectives of SMOS are to perform global observations of soil moisture over land and sea-surface salinity over oceans.		
Mission website	http://www.esa.int/Our_Activities/Observing_the_Earth/SMOS		
Launch date	2 November, 2009		
Orbital data	Type	LEO sun-synchronous	
	Mean altitude (km)	758	
	LST at ascending node	06:00	
	Inclination (deg)	98.44deg	
	Eccentricity	0.001	
	Repeat period, days	149-day repeat cycle with 3-day sub-cycle	
Sensor information	Туре	Passive microwave 2-D interferometric radiometer using aperture synthesis. The distribution of g	
	Swath (km)	100	
	Spatial resolution (km)	Rar	
	Polarisation	Dus	
Frequency of operation	1400 – 1427 MHz		
Type of service	Earth Exploration Satelli		
Relevant ITU Radio-Regulations	RR No. 5.340 (All emissions a Resolution 750 on the Compa active services		





Extension of the International Monitoring System (IMS)

Recent Plenipotentiary Conference Resolution 186 (Busan, 2014) instructs the Director BR:

"1 to promote access to information, upon request by concerned Administrations, related to satellite monitoring facilities, to address cases of harmful interference in accordance with Article 15 of the Radio Regulations, through Cooperation Agreements referred to under invites the Council above within the budgetary limitations of the Union in order to implement the objectives of this Resolution".

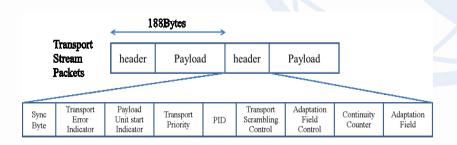
534.723-Atm.#1401

- → Cooperation Agreement Signed with:
 Germany, Pakistan, Vietnam, Belorussia
- → Under discussion: Brazil, Ukraine, Russia, Japan, Kazakhstan, Korea

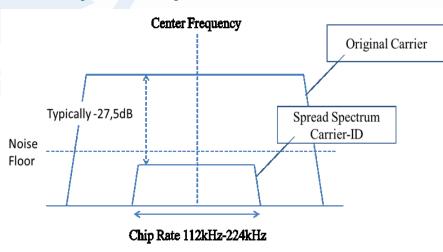
Development of a New Rec. on Access Procedures for FSS Occasional Use, Transmissions to GSO Space Stations in 4/6 GHz and 11-12/13/14 GHz FSS Bands.(ITU-R S.2049, Dec. 2013)

This Recommendation is intended to provide some easy-to-follow practices to enable OU operators to transmit to geostationary space stations without interfering with other users on the target satellite or with users on any other nearby satellites.

Free Download:


ITU-R Recommendations, Handbooks

Development of a New Recommendation on Carrier ID (ITU-R S.2062-0. Sept.2014)


Objective: To facilitate rapid identification of an interference source and reduce the time required to clear the interference that occurs unintentionally.

2 Methods:

Network Information Table (NIT)

Spread Spectrum CID

Free Download

ITU-R Recommendations, Handbooks

Further Activities on going in:

WP-1C

Development of a Preliminary Draft New ITU-R Report on Measurement Techniques and New Technologies for Satellite Monitoring

Annex 9 to Doc.1C/169 (WP1C Chairman's Report) → http://www.itu.int/md/R12-WP1C-C-0169/en

WP-7C

New Recommendation on Detection and Resolution of radio frequency interference to Earth exploration-satellite service (passive) sensors

Administrative Circular CACE/809. Approval process by 10 July 2017 Doc.SG7/24 → https://www.itu.int/md/R15-SG07-C-0024/en

Further Actions taken by ITU

I. To raise awareness of the impact of Harmful Interference to Space Services

- II. To disseminate information on Technical and Regulatory Solutions
- III. To Promote the exchange of experience, cooperation, and participation in related Fora.

Summary and Key Messages:

I. ITU plays a leading role to ensure interference-free operations of space services

II. Member States' cooperation and exchange of information among parties is essential

III. Only continuous synergistic actions by all sectors of Satellite Community can guarantee a minimum level of interference is kept.

ITU International Satellite Symposium 2017

